Define the concentration function of a metric measure space (X, d, \mu) to be

Borel probability measure

α (ε) := sup { μ (Aε) | A ∈ X Borel, μ (A) ≥ ½ }.

Here, $A_{\varepsilon} = \left\{ x \in X \mid d(x,A) \in \varepsilon \right\}$ is the ε -neighbourhood of A.

We will consider two examples:

· the sphere $5^n \subseteq \mathbb{R}^{n+1}$ equipped with geodesic distance and Haar measure

M = unique isometry -invariant Borel prob measure on 5" Lebesgue measure of subtended wedges

· the symmetric group Sn equipped with the uniform measure and the Hamming distance $d(5,T) = \frac{1}{n} |\{i \mid 5(i) \notin T(i)\}|$.

These both form normal Lévy families : 3 constants ci, c2 70 s.t.

5LOGAN: On high dimensional spaces with concentration, Lipschitz functions are approximately constant (close to their medians with high probability)

Suppose that $f: X \rightarrow \mathbb{R}$ is 1-Lipschifz, i.e. $|f(x) - f(y)| \leq d(x,y) \quad \forall \quad x,y \in X$ and M_f is a median, i.e. $\mu(f \leq M_f) \geq \frac{1}{2}$ and $\mu(f \geq M_f) \geq \frac{1}{2}$.

Then $\forall \epsilon > 0$, by defin of $\alpha(\epsilon)$ and since $f \in Lip'(X)$, $\mu(f > M_f + \epsilon)$, $\mu(f < M_f - \epsilon) < \alpha_{X_n}(\epsilon)$

 $\mu\left(\left|f-M_{f}\right|>\epsilon\right)\leq 2c_{1}\exp\left(-c_{2}n\epsilon^{2}\right).$

Concentration of measure on S^n will follow from the spherical isoperimetric inequality (based on the problem of minimising the perimeter liminf $\frac{1}{\epsilon}(\mu(A_{\epsilon}) - \mu(A))$ of a closed curve of given area A) and concentration on S_n will follow from a martingale inequality.

A consequence of the latter is extreme amenability of the group of measure preserving automorphisms of Lebesgue space (also the unitary groups of certain operator algebras).

§ Spherical isoperimetry

 $d = geodesic metric, \mu = Haar measure on 5ⁿ$

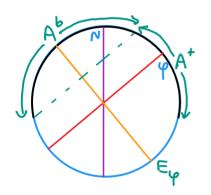
A cap is a set of the form C = Br(n), where n is the north pole (0, ..., 0, 1).

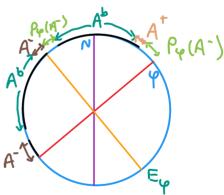
Theorem If $A \in S^n$ is a Borel set and $C \in S^n$ is a cap of equal measure, then $\mu(A_{\epsilon}) \geqslant \mu(C_{\epsilon}) \quad \forall \quad \epsilon > 0$.

Proof: Approximating by a sufficiently fine net, wma that A is closed. We will use the fact that the set K of nonempty closed subsets of S^n is compact when equipped with the Hausdorff metric $\rho(X,Y) = \inf \{r>0 \mid X \leq Yr, Y \leq Xr\}$.

Given $\varphi \in S^n$ with $\langle \varphi, n \rangle > 0$ let $E_{\varphi} = \{ x \in S^n \mid \langle \varphi, x \rangle = 0 \}$ the φ -equator $K_{\varphi}^+ = \{ x \in S^n \mid \langle \varphi, x \rangle \geq 0 \}$ northern hemisphere $K_{\varphi}^- = \{ x \in S^n \mid \langle \varphi, x \rangle < 0 \}$ southern hemisphere and let P_{φ} be reflection in E_{φ} , explicitly: $P_{\varphi}(x) = x - 2 \langle \varphi, x \rangle \varphi$.

Given such a φ and a closed subset $A \subseteq S^n$, let $A^b_{\varphi} = \left\{ \begin{array}{l} x \in A & | P_{\varphi}(x) \in A \right\} \\ A^+_{\varphi} = \left\{ \begin{array}{l} x \in A \cap K^+_{\varphi} & | P_{\varphi}(x) \notin A \right\} \\ A^-_{\varphi} = \left\{ \begin{array}{l} x \in A \cap K^-_{\varphi} & | P_{\varphi}(x) \notin A \right\} \\ \end{array} \right.$ and $A^+_{\varphi} = A^b_{\varphi} \cup A^+_{\varphi} \cup P_{\varphi}(A^-_{\varphi}).$





It is straightforward to check that A_{φ}^* is a closed subset such that $\mu(A_{\varphi}^*) = \mu(A)$ and $(A_{\varphi}^*)_{\epsilon} \subseteq (A_{\epsilon})_{\varphi}^*$, so in particular, $\mu((A_{\varphi}^*)_{\epsilon}) \leq \mu(A_{\epsilon})$.

It is easy to show that $X := \{ B \in K \mid \mu(B) = \mu(A) \text{ and } \mu(B_{\epsilon}) \leq \mu(A_{\epsilon}) \forall \epsilon > 0 \}$ is a closed subset of K s.t. $B \in X = > B_{\phi}^{*} \in X \forall \phi \in S^{n} \text{ with } \langle \psi, n \rangle > 0$.

Let Y be the smallest closed subset of K s.t. $A \in Y$ and $B \in Y \Rightarrow B_{\varphi}^* \in Y \ \forall \varphi \in S^n \ with \ \langle \varphi, n \rangle > 0$

Then $Y \subseteq X$, so for every $B \in Y$ and E > 0, $\mu(B) = \mu(A)$ and $\mu(B_{\epsilon}) \leq \mu(A_{\epsilon})$.

By compactness of Y, there exists $B_0 \in Y$ s.t. μ (BnC) attains its maximum on Y at $B = B_0$. The Theorem will be proved once we show that $C \subseteq B_0$.

Suppose $C \notin B_0$. Then $J \times \in S^n$, $\varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq C \setminus B_0$. Hence, $\mu(C \setminus B_0) > 0$, so $\mu(B_0 \setminus C) > 0$ too. (otherwise, $\mu(B_0) = \mu(B_0 \cap C) < \mu(C) = \mu(A) = \mu(B_0)$) Cover $B_0 \setminus C$ by finitely many balls of radius $\frac{\varepsilon}{3}$ and choose one, say $B_{\frac{\varepsilon}{3}}(y)$, s.t. $\mu(B_{\frac{\varepsilon}{3}}(y) \cap B_0 \setminus C) > 0$.

Note that $d(x,y) \ge \frac{2\varepsilon}{3}$. (otherwise $b_{\varepsilon}(x) \cap b_0 \ne \emptyset$) Let $\varphi = \frac{x-y}{\|x-y\|}$, so that $f_{\varphi}(y) = x$ and $(s_0) < \beta, n > \infty$.

Then Pp (B= (y) 1 Bo (C) = C, so p ((Bo) + 1 C) > p (Bo C) * 1

Corollary The concentration function on
$$S^n$$
 satisfies α (E) $\leq \sqrt{\frac{11}{8}} \exp\left(-\frac{n-1}{2} \varepsilon^2\right)$.

Proof: Integration!

Other examples of isoperimetry:

In \mathbb{R}^n , equipped with Euclidean distance and Lebesgue measure λ , the isoperimetric problem is solved by the the ball. See: Brunn-Minkowski inequality

Equipped instead with Gaussian measure
$$q_n(A) = (2\pi)^{-\frac{n}{2}} \int_A \exp\left(-\frac{||x||^2}{2}\right) d\lambda(x)$$
,

the problem is solved by the half-space

$$\begin{aligned}
|f_{5} &= \begin{cases} \times | \times_{n} \leq 5 \end{cases} \\
&= \end{cases} &\propto \begin{pmatrix} (\epsilon) \leq \frac{1}{\epsilon \sqrt{2\pi}} & \exp\left(-\frac{\epsilon^{2}}{2}\right) & \text{Gaussian} \\
&\text{isoperimetry}
\end{aligned}$$

· On the hypercube Q= {0,13" equipped with uniform measure and Hamming distance 11x-y11, = | {i 1xi 79i}], the problem is solved by initial segments in the reverse lexicographic order. This is Harper's Theorem. Therefore, $\alpha(E) \leq \exp\left(-\frac{2}{n}E^2\right)$.

To see this, first note that an initial segment I of measure > 1 must contain an element x ∈ Qn of length $(x) := ||x||_1 \ge \frac{n}{2}$ (if n is even) or the largest x of length $\frac{n-1}{2}$ (if n is odd). Otherwise, $|T| < 2^{n-1} = \frac{1}{2} |Q_n|$. Then, since I is an initial segment, $B_{I} = \frac{1}{2} I$ (0) EI. So for any E>O, IE & {x & Qn | ((x) > 12 + E). $\leq \mu \left(1 > \frac{n-1}{2} + \varepsilon \right)$ = probability of > $\frac{n-1}{2}$ + E heads when a fair coin is tossed n times $= P \left(5_n \geqslant 2\varepsilon + 1 \right) \leqslant P \left(5_n \geq 2\varepsilon \right),$ where $S_n = \sum_{i=1}^n E_i$ is the sum of n i.i.d. Bernoulli r.v.s

with
$$P(\epsilon_i = 1) = P(\epsilon_i = -1) = \frac{1}{2}$$
.

Each ϵ_i is sub-Gaussian: $\mathbb{F}\left(e^{t\epsilon_i}\right) = \cosh t \leq e^{\frac{1}{2}t^2}$, hence so is $s_n : \mathbb{F}\left(e^{ts_n}\right) \leq e^{\frac{1}{2}nt^2}$ by independence.

It follows from Markov's inequality with $t = \frac{2\epsilon}{n}$ that $\mathbb{P}\left(s_n \ge 2\epsilon\right) \le e^{-2\epsilon t} \mathbb{E}\left(e^{ts_n}\right) \le \exp\left(-\frac{2\epsilon^2}{n}\right)$.

& The symmetric group

- Martingales

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space, by a sub - σ -algebra of \mathcal{F} and $f \in L'(\Omega, \mathcal{F}, \mu)$.

Then $v(A) := \int_A f d\mu$, $A \in \mathcal{Y}$, defines a measure on \mathcal{Y} that is absolutely continuous wit μ .

There is therefore a unique $h \in L'(\Omega, \mathcal{Y}, \mu)$, the Radon-Nikodym derivative $\frac{dv}{d\mu}$, s.t. $\int_A f d\mu = \int_A h d\mu \quad \forall A \in \mathcal{Y}$.

The function h is called the conditional expectation of furt by, written h = IF (fly).

The operator $f \mapsto \mathbb{E}(f, g)$ is a positive linear map of norm one on all L^p spaces ($1 \le p \le \infty$) s.t.

- · E (E(f|y)|y') = E(f|y') + y'= y
- · E (fig | g) = g· E (flg) Y ge Lo (sig, n)
- · E (fly) = Ef = f fdn if y = {\$\phi, \sigma_3}.

A martingale with a sequence of G-algebras $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \dots \subseteq \mathcal{F}$ is a sequence f_1, f_2, \dots of functions $f_i \in L'(\Omega, \mathcal{F}_i, \mu)$ s.t. $\mathbb{E}(f_{i+1}|\mathcal{F}_i) = f_i \quad \forall i$.

μ(A) >0 and Be F; s.t. B ⊆ A, μ(B) < μ(A) ⇒ μ(B) =0

rm> For a function f on Ω , $\mathbb{E}(f, \mathcal{F}_i)$ is the function which is constant on atoms of Ω_i , the constant being the average of f on the atom.

•
$$F_i = P(\Omega) = 0$$
 atoms are singletons,
 $E(f|F_i) = f$

.
$$f_i = \{\phi, \Omega\} \Rightarrow \Omega$$
 is an atom
 $\mathbb{E}(f|f_i) = \mathbb{E}f = \frac{1}{|\Omega|} \sum_{\omega \in \Omega} f(\omega)$

• $f_i = G(\Omega_i) \Rightarrow$ atoms are elements of the partition Ω_i

Using the basic properties of the conditional expectation together with the inequality $e^{x} \leq x + \exp(x^{2})$, one proves:

Lemma Let $f \in L^{\infty}(\Omega, \mathcal{F}, \mu)$ and $\{ \emptyset, \Omega \} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_1 = \mathcal{F}_1 : \emptyset \}$ Write $d_j = \mathbb{F}(f|\mathcal{F}_j) - \mathbb{F}(f|\mathcal{F}_{j-1})$ for $1 \le i \le n$.

Then for every c > 0, $\mu(|f - \mathbb{F}f| \ge c) \le 2 \exp(-\frac{c^2}{4 \sum \|d_j\|_{\infty}^2})$.

Theorem (Maurey) The family of symmetric groups 5n, with uniform measure and Hamming distance $d(\sigma,\tau) = \frac{1}{n} \left| \left\{ i \mid \sigma(i) \neq \tau(i) \right\} \right|$, is a normal Lévy family with constants $c_1 = 2$, $c_2 = 64$, i.e. $\forall A \subseteq S_n \forall E > 0$ $\mu(A_E^c) \leq 2 \exp\left(-\frac{n}{64}E^2\right)$.

Proof (sketch): For each $j \in \{1, ..., n\}$, let Ω_j , be the partition $\{A_{i_1, ..., i_j} \mid 1 \le i_1, ..., i_j \le n \text{ distinct } \}$, where $A_{i_1, ..., i_j} : \{\pi \in S_n \mid \pi(i) = i_1, ..., \pi(j) = i_j \}$, and let $f_j : \sigma(\Omega_j)$, so $\{\phi, S_n\} : f_n \in \mathcal{F}_1 \subseteq ... \subseteq \mathcal{F}_n : \mathcal{P}(S_n)$.

Key fact: for any atom $A = Ai_1,...,i_5 \in \mathcal{F}_j$ and any two atoms $B = Ai_3...,i_5,\Gamma$, $C = Ai_1,...,i_5,S \in \mathcal{F}_{j+1}$ contained in A, there is a bijection $\varphi: B \rightarrow C$ s.t. $d(b,\varphi(b)) \leq \frac{2}{n} \forall b \in B$.

Namely: $\varphi(\overline{\Pi}) = \varphi \circ \overline{\Pi}$, where $\varphi = (r s)$. $\varphi(\overline{\Pi})(i) = \overline{\Pi}(i)$ for all $i \in \mathbb{R}$ except possibly i = j+1 and $i = \overline{\Pi}^{-1}(s)$

From this, deduce that for any 1-Lipschitz function f on Sn, the martingale $f_j = \mathbb{E}(f|f_j)$ satisfies $\|d_j\|_{\infty} \leq \frac{2}{n}$ for j=1,...,n.

Lemma => $\mu(|f-ff| \ge c) \le 2\exp(-\frac{n}{16}c^2)$ (*) for any such f and any c >0.

This in particular applies to $f = d(\cdot, A) \quad \forall A \in S_n$. Taking $c = 4 \left(\frac{1}{n} \log 4\right)^{\frac{1}{2}}$, we get $\mu\left(\left|\frac{1}{n}d(\cdot, A) - \mathbb{E}d(\cdot, A)\right| < 4\left(\frac{\log 4}{n}\right)^{\frac{1}{2}}\right) > \frac{1}{2}.$

Fix A with $\mu(A) \geqslant \frac{1}{2}$. Then $\mu(d(\cdot,A)=0) \geqslant \frac{1}{2}$, so $\exists \pi \in S_n \text{ s.t. } d(\pi_A)=0 \text{ and } |d(\pi_A)-\mathbb{E}d(\cdot,A)| < 4\left(\frac{\log 4}{n}\right)^{\frac{1}{2}}$.

That is, If
$$d(\cdot, A) < 4\left(\frac{\log 4}{n}\right)^{\frac{1}{2}}$$
.

(*) =>
$$\mu\left(d(\cdot,A) \ge c + 4\left(\frac{\log 4}{n}\right)^{\frac{1}{2}}\right) \le 2\exp\left(-\frac{n}{16}c^{2}\right)$$
 for any $c>0$

$$= \mu(A_{\varepsilon}^{c}) = \mu(d(\cdot, A) > \varepsilon) \leq 2 \exp\left(-\frac{n}{64}\varepsilon^{2}\right)$$
for any $\varepsilon > 8\left(\frac{\log 4}{n}\right)^{\frac{1}{2}}$.
$$\left(\frac{\log 4}{n}\right)^{\frac{1}{2}} \leq \frac{\varepsilon}{2}$$

For
$$\varepsilon \leqslant 8 \left(\frac{\log 4}{n}\right)^{\frac{1}{2}}$$
,

$$\mu(A_{\epsilon}^{c}) \leq \mu(A^{c}) \leq \frac{1}{2} \leq 2 \exp\left(-\frac{n}{64} \epsilon^{2}\right)$$

so the inequality holds for all E>0.

& Extreme amenability

A topological group G is amenable if

every continuous affine action of G on a compact convex set has a fixed point

or equivalently if

· there is a left invariant mean on the space $C_r^b(G)$ of right uniformly continuous functions on G.

right uniformity: coarsest compatible with the topology s.t. each $g \rightarrow gh$ is uniformly continuous $m: C_{p}^{b}(G) \rightarrow C_{p}^{b}$ positive, linear, unital, $m(gf) = m(f) \quad \forall \ f \in C_{p}^{b}(G), \ g \in G_{p}^{b}$ (where $gf(g^{-1}x)$)

If G is locally compact, amenability is also equivalent to the existence of an invariant mean on the C^* -algebra $L^\infty(G)$ of measurable functions $G \to C$ that are essentially bounded wit Haar measure.

+ many, many more equivalent conditions

Examples · compact and abelian groups

· the unitary group of an injective von Neumann algebra with the "ultraweak" topology (de la Harpe)

but not. any G containing Itz as a closed subgroup.

G is extremely amenable if

· every continuous action of G on a compact space has a fixed point

or equivalently if

· Cb(G) has a left invariant multiplicative mean.

Theorem (Veech) Any locally compact group admits a free action on a compact space, so is NOT extremely amenable.

Using concentration of measure, Gromov + Milman proved:

Theorem The unitary group of an infinite dimensional Hilbert space is extremely amenable under the strong operator topology.

SOT: $T_j \rightarrow T$ iff $||T_j x - Tx|| \rightarrow 0 \ \forall x \in H$ WOT: $T_j \rightarrow T$ iff $\langle T_j x, y \rangle \rightarrow \langle Tx, y \rangle \ \forall x, y \in H$ SOT = WOT on $\mathcal{U}(H)$

I will illustrate the idea with the proof of the following. Theorem (Giordano-Pestov) The group Aut(X, \mu)_w of all measure-preserving automorphisms of a standard nonatomic (sigma-) finite measure space is extremely amenable under the weak topology.

In the finite case, we may assume up to isomorphism that (X, μ) is [0, 1] with Lebesgue measure.

Aut (X,μ) is then the group of (equivalence classes of — i.e. up to sets of measure Zero) invertible maps $\Gamma: [0,1] \rightarrow [0,1]$ s.t. $\lambda(T^TE) = \lambda(E)$ \forall measurable E.

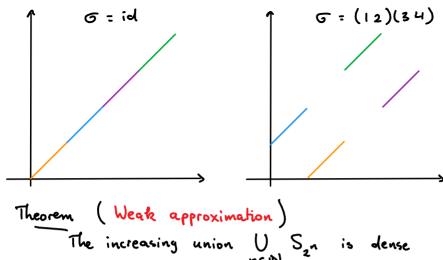
Each such T induces a unitary operator $U_T: L^2(\Gamma_0, iJ, \lambda) \rightarrow L^2(\Gamma_0, iJ, \lambda)$ $f \mapsto f_0 T^{-1}$.

The weak topology on Aut ([0,1] λ) is the restriction of the WOT (= 50T). Equivalently, [5] \rightarrow T iff λ (T; \triangle \triangle TE) \rightarrow 0 \forall measurable \triangle .

The uniform topology on Aut ([0,1], λ) is induced by the left invariant metric $d(\sigma, \tau) = \lambda \{ x \in [0,1] \mid \sigma(x) \neq \tau(x) \}$. It is strictly finer than the weak topology.

For each ne IN, the symmetric group S_{2n} embeds into Aut ([0,1], λ) via interval exchange transformations of the dyadic intervals $\left(\frac{k}{2^n}, \frac{k+1}{2^n}\right)$, $k=0,1,...,2^n-1$.

The above metric of restricts to Hamming distance.



The increasing union U Szn in Aut ([OI])

See e.g. Halmos's Lectures on Ergodic Theory.

It suffices to prove extreme amenability of G = U S2n.

Denote Haar measure on Szn by Mn.

Cb (G) is a commutative unital C*-algebra whose spectrum is the Samuel compactification of G so its state space is weak* compact.

=> wma he states $\varphi_n: C_r^b(E) \to \mathbb{C}$, $\varphi_n(f): \int_E d\mu_n$ converge weak* to a state φ .

We will show that q is multiplicative and G-invariant.

By Maurey's Theorem, for every $f \in C_r^b(G)$, $n \in \mathbb{N}$ and E > 0, $\mu_n(|f-M_n(f)| > E) \leq 4 \exp\left(-\frac{2^n}{64}L_f^2E^2\right)$, where $M_n(f)$ is a μ_n median of f and where, by uniform continuity, $L_f > 0$ is s.t. f varies by at most E on entourages of width at most $L_f E$.

=> \int_{\mathbb{G}} | f - M_n(f)| d\mu_n -> 0 \text{ \textit{ \text{Fe C}_r^* (\mathbb{G})}.}

Hence, for every $f,g \in C_r^b(G)$, $|\int fg \, d\mu_n - \int f \, d\mu_n \int g \, d\mu_n | \leq \int |f - M_n(f)| |g| \, d\mu_n$ $+ |M_n(f)| \int |g - M_n(g)| \, d\mu_n$ $+ |M_n(g)| \int |M_n(f) - f| \, d\mu_n$ $+ \int |f| \, d\mu_n \int |M_n(g) - g| \, d\mu_n$ $-> 0 \quad \text{as } n = \infty$

so $\varphi(fg) = \varphi(f)\varphi(g)$.

Now let ge G, say ge S2m.

For every $n \ge m$, since μ_n is left G invariant, $\int_G g f d\mu_n = \int_G f d\mu_n .$

So, 4 (9f) = 4(f).

Remark · (Gromov - Milman)

More generally, every Lévy group $G = \bigcup_{i \in I} K_i$, K_i compact s.t. the Haar

measures on Ki concentrate wit the right uniformity, is extendly amenable.

. (Giordano - Pestov)
With the uniform topology, Aut ([0,1],])
is NOT amenalok.

§ Anosov diffeomorphisms = Axiom A = Smale systems spaces

Let $f: X \to X$ be a measure preserving transformation of a probability space (X, Σ, μ) .

The dynamical system f: XS is measured via observables: functions φ from the state space X to, say, R that may be required to be Lipschitz/continuous/integrable.

States $x_0, x_1 = fx_0, ..., x_n = fx_{n-1}, ...$ ($\varphi(x_n)$)

The finite time averages $A_n \varphi(x) = \frac{1}{n} \left(\varphi(x) + \varphi(f(x)) + \dots + \varphi(f^{n-1}x) \right)$ may be thought of as statistical estimators of the spatial average $\int_X \varphi \, d\mu$.

This is especially true if μ is ergodic wt f, i.e. $E \in \mathbb{Z}$, $\mu(f^{-1}E\Delta E) = 0 \Rightarrow \mu(E) = 0$ or 1. equivalently: every f-invariant (up to measure 0) measurable function $X \to \mathbb{R}$ is q.e. constant

In this case, Birkhoff's ergodic theorem implies that $\lim_{n\to\infty} A_n \varphi(x) \longrightarrow \int_X \varphi \, d\mu$ almost surely.

Remarks

Tf X is compact, there is G∈ Z of full measure s.t. for every continuous φ,
An φ(x) → ∫ φdμ ∀ x∈ G
i.e. there is a common set of generic points for all continuous observables.

· If m is not ergodic wrt f, then the convergence is to the conditional expectation of φ wrt the G-algebra of invariant sets.

Q: Itow fast does the finite time estimate converge to the spatial average?

Not much can be said without imposing some regularity on f. Convergence for $x \in G$ can be arbitrarily slow.

Let M be a compact Riemannian manifold.

A diffeomorphism f: M -> M is called an Anosov diffeomorphism if the tangent space splits into Df-invariant sub-bundles TM = E^s DE^u s.t. Df) is uniformly expanding

and Df| = is uniformly contracting.

This means:
$$(\mathbb{D}f)_x E^3(x) = E^5(f(x))$$
,
 $(\mathbb{D}f)_x E^4(x) = E^4(f(x))$

and there are constants C>0, $0<\lambda<1$ s.t. for every $x \in M$ and n > 0,

$$\|D(f^n)_x S\| \le C\lambda^n \|S\| \ \forall \ S \in E^s(x)$$
 $\|D(f^n)_x \eta\| \le C\lambda^{-n} \|\eta\| \ \forall \ \eta \in E^u(x)$

The stable subspace $E^{s}(x)$ is tangent at x to $W^{s}(x) = \{y \in M \mid d(f^{n}x, f^{n}y) \Rightarrow 0 \text{ as } n \Rightarrow \infty \}.$

necessarily exponentially fast immersed submanifold of M called the stable manifold at x

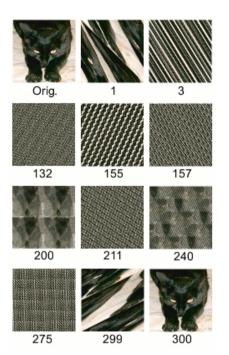
The unstable manifold Wux) is defined similarly.

Example Arnold's cat map

M is the torus R^2/\overline{u}^2 and $f: M \rightarrow M$ is defined by $f\left(\frac{x}{y}\right) = \binom{2}{1}\binom{x}{y} \mod 1$.

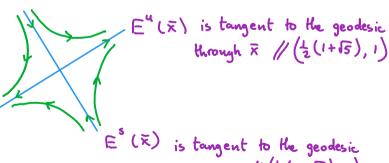
hyperbolic toral automorphism

The matrix
$$A = \begin{pmatrix} 2 & 1 \end{pmatrix}$$
 has eigenvalues $\lambda = \frac{1}{2} \begin{pmatrix} 3+\sqrt{5} \end{pmatrix} > 1$ and $\frac{1}{\lambda} < 1$.
 $A = \frac{1}{2} \begin{pmatrix} 3+\sqrt{5} \end{pmatrix} > 1$ and $A = 1$ along the $A = 1$ evector $A = 1$ along $A = 1$ a



By Claudio Rocchini - Own Work (It's not proper Arnold's cat but my black cat, due copyright restrictions), CC BY 2.5, https://commons.wikimedia.org/w /index.php?curid=1350710

Points in $\mathbb{Q}^2/\mathbb{Z}^2$, i.e. those with rational coordinates, have periodic orbits.



is tangent to the geodesic through \bar{x} $//(\frac{1}{2}(1-15), 1)$

>>> every (un)stable manifold is dense

iff f is mixing $(\forall \text{ open } \emptyset \neq U, V \subseteq M)(\exists \text{ neN})(\forall \text{men})$ $(f^{m}U \cap V \neq \emptyset)$

iff every $x \in M$ is non-wandering $(\forall \text{ open } U \subseteq M \text{ containing } x)(\exists n \in IN)(f^n U_1 U \neq \emptyset)$

iff every stable manifold is dense in M . iff every unstable manifold is dense in M .

Theorem (Anosov) A C^2 Anosov diffeomorphism that preserves a smooth measure $\mu(A) = \int_A q(x) d\mu(x)$ Riemannian volume

is ergodic.

Birkhoff
$$\frac{1}{n}\sum_{i=0}^{n-1} \varphi(f^ix) \rightarrow \int_{m} \varphi d\mu \text{ a.s. } \forall \text{ cts } \varphi$$

Even if f does not preserve volume, as long as f: MG is irreducible and C^2 , there exists a unique f-invariant measure μ , called the Sinai-Ruelle - Bowen measure of f, s.t. $\begin{cases} x \in M \mid A_n \varphi(x) \longrightarrow \int_M \varphi d\mu & \forall \text{ cts observable } \varphi \end{cases}$

has full volume.

Using martingale techniques, Chazottes + Goeuzel demonstrate exponential concentration inequalities for the SRB measures of such Anosov systems.

(more generally, for a dynamical system modelled by a uniform Young tower with exponential tails)

Theorem (CG) There is a constant C >0 s.t. Vne N and every function K (xo, ..., xn-1) that is 1-Lipschitz in each coordinate,

 $\int_{M} e^{K(x,f_{x},...,f_{x}^{n-1}x)} - \int K(y,f_{y},...,f_{y}^{n-1}) d\mu(y) d\mu(x) \leq C n$

Proof: Take $K = \varphi(x_0) + ... + \varphi(x_n)$ and apply Chernoff's bounding trick, i.e. a similar application of Markov's inequality used in the context of Sub-Gaussian random variables (p.7). \square

Conclusion: For C² Anosov diffeomorphisms, the finite time averages of a Lipschitz observable converge in SRB measure to its spatial average exponentially fast.

Batumi 2021: references

Bhishan Jacelon

- [BS02] M. Brin and G. Stuck. Introduction to dynamical systems. Cambridge University Press, Cambridge, 2002.
- [CCS05] J.-R. Chazottes, P. Collet, and B. Schmitt. Devroye inequality for a class of non-uniformly hyperbolic dynamical systems. *Nonlinearity*, 18(5):2323–2340, 2005.
- [Cha15] J.-R. Chazottes. Fluctuations of observables in dynamical systems: from limit theorems to concentration inequalities. In Nonlinear dynamics new directions, volume 11 of Nonlinear Syst. Complex., pages 47–85. Springer, Cham, 2015.
- [GM83] M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math., 105(4):843–854, 1983.
- [GP07] T. Giordano and V. Pestov. Some extremely amenable groups related to operator algebras and ergodic theory. J. Inst. Math. Jussieu, 6(2):279–315, 2007.
- [Hal60] P. R. Halmos. Lectures on ergodic theory. Chelsea Publishing Co., New York, 1960.
- [Mau79] B. Maurey. Construction de suites symétriques. C. R. Acad. Sci. Paris Sér. A-B, 288(14):A679–A681, 1979.
- [MS86] V. D. Milman and G. Schechtman. Asymptotic theory of finitedimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
- [Run02] V. Runde. Lectures on amenability, volume 1774 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
- [You98] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. (2), 147(3):585–650, 1998.
- [You02] L.-S. Young. What are SRB measures, and which dynamical systems have them? volume 108, pages 733-754. 2002. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays.